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1. INTRODUCTION 

Importance 0Jconvection 
Recent experimental studies [l, 21 provide evidence of 

non-Fourier heat conduction in some materials with “non- 
homogeneous inner structures” including porous solids (e.g. 
sand) and processed meat. These studies propose conduction 
occurs by thermal wave propagation with sharp wave-fronts 
separating heated and unheated zones. The non-homo- 
geneous structures apparently induce waves by delaying the 
response between heat flux and temperature gradient. For 
example, the delay may represent time needed to accumulate 
energy for significant heat transfer between structural 
elements [2]. In comparison, the classical model of Fourier’s 
law permits heat flux to respond immediately to changes in 
temperature gradient. Consequently, the law does not lead 
to this type of thermal wave behavior. 

The non-Fourier “hyperbolic heat equation,” described 
shortly, appears applicable to some non-homogeneous 
materials. The study with processed meat [I], for instance, 
shows good agreement between measured temperatures and 
predictions using this equation. Further. the study suggests 
hyperbolic conduction may occur in human tissue as well 
as processed meat. Although the study does not involve 
convection heat transfer between meat samples and their 
surroundings. convection should be important in many 
applications involving non-homogeneous materials. For 
example, medical applications often involve convection, as 
with tissue burns caused by hot liquids [3]. 

It is important to note non-Fourier conduction is usually 
associated with “microscale” applications involving very 
small time and length scales, such as sub-picosecond (< IO-” 
s) heating of silicon thin films (< I p) during integrated 
circuit fabrication. Convection may not be important in 
microscale applications because of insufficient time for devel- 
opment of fluid motion. However, the experiments [l, 21 
with non-homogeneous materials involve “macroscale” non- 
Fourier conduction since length and time scales are relatively 
large. Hence, these larger scales can support convection. An 
expression for estimating convection conditions under which 
hyperbolic conduction is important is given with the results. 

One analytical study [4] examines hyperbolic conduction 
in an infinite cylinder with internal Joule heating and con- 
vection heat exchange with a surrounding fluid. However, 
no analytical solution is available that isolates the effect of 
convection. Thus, the objective here is to obtain this solution 
for a semi-infinite slab with surface convection for the cases 
of heating and cooling of the slab. This solution would be 
convenient for making temperature calculations. correlating 
future experimental data involving convection and verifying 

numerical solutions. Also, the solution applies to other geo- 
metries under proper conditions. For example, it can apply 
to a finite slab. as described with the results. 

Equations of hyperbolic conduction 
Hyperbolic conduction stems from the Cattaneo-Vernotte 

model relating heat flux and temperature gradient : 

written here for conduction in the x-direction. In equation 
(I), the thermal relaxation time 5 is an approximate measure 
of the time-delay in heat flux achieving the Fourier’s law 
value after a change in temperature gradient. Measured 
values for 5 are approximately 15 and 20 s for processed 
meat [l] and sand [2], respectively. The thermal wave speed 
c is rebated to relaxation time by 7 = ctic’. 

Equation (1) is more general than Fourier’s law since 
setting t = 0 (immediate response) reduces it to the law. 
Alternatively, 5 = 0 corresponds to c + co, implying thermal 
waves propagate at an infinite velocity for Fourier conduc- 
tion. Also. equation (1) reduces to Fourier’s law for steady- 
state conditions (aqj?t = 0) even for 7 # 0. 

Combining equation (1) with the statement of energy con- 
servation for a differential control volume gives the hyper- 
bolic heat equation. For constant properties and z this equa- 
tion is 

which is mathematically classified as hyperbolic. For brevity 
here, the equation does not include effects of internal energy 
generation or absorption. In equation (2). d’T/Cr’ represents 
wave propagation of heat and ZTjdi accounts for wave damp- 
ing (decay). The equation reduces to the Fourier heat equa- 
tion for z = 0 or steady-state conditions. 

Solutions to hyperbolic conduction problems are non- 
Fourier thermal waves damped by heat diffusion. In contrast, 
Fourier solutions show conduction only by diffusion. 
Further, solutions to hyperbolic problems converge to cor- 
responding Fourier solutions for sufficiently large times after 
thermal disturbances (e.g. imposition of heat fluxes) because 
of wave damping. References [5-lo] review the history 
behind equations (1) and (2) and solutions already available 
for hyperbolic problems. 
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I 

I NOMENCLATURE 

11 
H 
I 

k 
P 
q 
Q 

T 
7-0 
T, 

u 

thermal wave speed 
heat transfer coefficient 
unit step function 
integral defined by equation (7a) 
or (7b) 
thermal conductivity 
Laplace transform parameter 
heat flux 
dimensionless heat flux, 
= y:‘]h(T, ~ r,Jl 
time 
transient temperature of slab 
initial temperature of slab 
constant fluid temperature outside of 
convection boundary layer 
integration variable in equation (7a) 

2. ANALYSIS 

The semi-infinite slab occupies the half-space s B 0 and is 
initially at temperature T,,. At time I = O+ the surface along 
s = 0 is exposed to a hot or cold fluid at temperature T, 
Then, the fluid exchanges heat by convection with the slab. 
where 7’, > T,, and T, < T,, correspond to heating and cool- 
ing of the slab, respectively. The heat transfer coefficient /I. 
the value of T, outside the convection boundary layer and 
T and 2 for the slab are constant. Also, there is no energy 
generation or absorption within the slab. 

Equation (2j governs T(x, I) for the slab with initial and 
boundary conditions : 

T(x, 0) = T,, (3a) 

?T(s. 0) 

it 

T(z + x. /) = T,, (3C) 

q(0. t) = h[T, ~ T(0. /)]. (3d) 

Equation (3b) corresponds to an initial heat flux of zero : 

q(.x. 0) = 0 (3e) 

since non-zero heating of the slab for i i 0 would cause 
temperature to already be changing at t = 0 [I 11. Finally, 
equation (3d) gives ~7 from convection at Y = 0. This q must 
be inserted into equation (1) to specify conduction into or 
out of the slab at .Y = 0. 

Solution 
The problem given by equations (I). (3e), (2) and (3a)) 

(3d) is placed in a more convenient form by introducing the 
dimensionless time i; and location 17. along with dimen- 
sionless temperature H(q, <). relaxation time a and heat flux 
Q. The value of 0 varies from 0 to I for both heating and 
cooling of the slab. 

Next, using the Laplace transform (with parameter p) to 
eliminate 5, then solving for the transformed temperature 
D(11.p) gives 

B_ (I+v) ev-v[~(~+v)l”i 
(4) 

P ((I +i:p)+[p(l +cpj]’ ‘) 

Equation (4) reduces to the corresponding Fourier 
expression for c = 0 (T = 0) or sufficiently large time (p << 1). 
This “large time” behavior refects convergence of the hyper- 
bolic solution to the Fourier solution as the wave decays. 

Y location inside slab 
5 integration variable in equation (7b). 

Greek symbols 
2 thermal difiusivity 

dimensionless thermal relaxation 
time = scrh’/k’ 

x 
dimensionless location inside slab = d/k 
dimensionless temperature of 
slab = (T- T,,):( T, - T,,) 

5 dimenionless time = rcch’:‘k’ 
5 thermal relaxation time. 

Subscripts 
step value corresponding to step change 
wave value at location of wave-front. 

Pausing here, in the analysis. reveals two key features of 
the wave behavior. First. rewriting equation (4) for 
sufhciently small time (p >> I). then inverting the resulting 
expression gives 

where H is the unit step function. This step function identifies 
the thermal wave separating heated and unheated zones in 
the slab. Specifically, 0 = 0 when 1 > t/c’ ’ for the unheated 
zone ahead of the wave. In contrast, (1 > 0 when il < g;i:’ ’ 
for the heated zone behind the wave. Thus, the wave location 
is v!<,.,>~ = 5:~’ ‘. In fact, reverting to original variables shows 
.YW,,, = (‘1. as expected. 

The second key feature of wave behavior is the step change 
in surface temperature that occurs when the slab is exposed 
to the convection heat Rux. Setting ‘1 = 0 and < = 0’ in 
equation (5) shows this step change to be 

()\,cp = I,(1 +C ‘). (6) 

This step change is a consequence of delayed conduction mto 
(or out of) the slab, as discussed with the results. As expected. 
equation (6) shows no step change m surface temperature 
for Fourier conduction (t: = 0) since there is no conduction 
delay. 

Returning to the analysis. the inverse transform of g in 
equation (4) is obtained using contour integration with 
branch points at p = 0 and p = ~ I it;. The contour and other 
details are analogous to those for a semi-infinite slab with an 
imposed step change in surface temperature [12]. Thus. the 
Inverted temperature 0(~, <) IS 

where : 

fj =(I-I&)H(<-P/E”). (7) 

(I~Eu)sin(rl[LI(l--cu)]“I 

X 
I 

+[U(1~cU)]“~cos ir7[U(l-W)] ‘) 
u+(l --Fu) I 

du. (7a) 

Equations (7) and (7a) reduce to Fourier expressions for 
1. = 0. Further. the transformation z = I:u removes the 
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singularity at u = 0 in equation (7a), giving the equivalent 
expression 

i‘ -I 

(Z--E) sin {(q/z)(z-s)“‘) 

* em<,’ 
I= ~ 

+(z-E)‘,Z cos {(?l/z)(z-E)‘:‘} dz 

/ - 1+(=--E) 1. 

(7b) 

Finally, setting ‘1 = 0 in equations (7)-(7b) gives expressions 
for transient surface temperature. 

3. ILLUSTRATION OF RESULTS 

Slab heating 
The results for heating of the slab are illustrated here for a 
turbulent flow of air at atmospheric pressure and velocity of 
35 m SV’. A representative value 1131 for h is 78.07 W (mm2 
Cm’) using T, = 6O’C and To = 2O’C. Also, E = 0.02 using 
values for processed meat [1] : T = 15 s, k = 0.80 W (m C)-’ 
anda= 1.40xlO~‘m’s~‘. 

Equations (6), (7) and (7b) give the predictions for the 
hyperbolic case. The numerical integrations needed for equa- 
tion (7b) are performed with Simpson’s rule using an upper 
limit of 1 x 10’ to approximate the upper limit of infinity. 
With this approximate limit, and sufficient subdivisions of 
the integration range, there is less than a 1% change in 
predicted temperatures when the limit is increased. These 
predictions are compared to those for the Fourier case 
(e = 0) obtained with its expression for temperature ([14], or 
equations (7) and (7a)). 

The key feature of this comparison is the higher tem- 
perature of the hyperbolic case. This higher temperature 
results from the conduction delay that, at first, confines heat- 
ing of the slab by the thermal wave to a thin internal region 
adjacent to the surface. Thus, the step increase in surface 
temperature given by equation (6) reflects the initial con- 
duction delay. Further, the equation shows the step change 
becomes larger as E (hence 5) increases. since the delay 
increases. 

In contrast. temperatures for the Fourier case are lower 
since heat is immediately conducted inro the slab. Conse- 
quently, surface temperature for the Fourier case does not 
show a step increase. As time increases, however, the hyper- 
bolic temperatures converge to the Fourier values since the 
wave decays while propagating into the slab. 

More specifically, Fig. 1 compares surface temperature vs 
time for the hyperbolic (solid line) and Fourier (dashed line) 
cases. The maximum difference between cases occurs as heat- 
ing begins at 5 = O+, when Qrtep = 0.12 for the hyperbolic 
case. In comparison, the Fourier temperature initially 
remains at 0 = 0. 

The maximum difference in surface temperature is about 
25%, re!ative to the Fourier value. In practical terms, this 
difference may not be important since there is a “rule of 
thumb” uncertainty of ~20% in empirical values for h. 
However, the difference between cases increases as E becomes 
larger by increasing 7 or h. In particular, increasing t raises 
the “hyperbolic temperature” by increasing the conduction 
delay. while increasing h raises this temperature by increasing 
the amount of heat transferred, then confined, near the 
surface. For instance, replacing the air with engine oil of 
h = 200 W (mm’ C ‘) gives i: = 0.13 and H,,,, = 0.27. Now, 
the maximum difference in surface temperature is increased 
to about 55%. relative to the Fourier value 0 = 0 (or 2O’C). 
This larger difference may be important, being considerably 
greater than the “rule of thumb“ uncertainty in /T. 

Finally. Fig. I shows that the surface temperature for 
the hyperbolic case converges to the Fourier value as time 
increases. For example, the difference between cases is 
reduced to approximately 59’0 by 5 = 0.10 (or 5~). 

DIMENSIONLESS RELAXATION TIME: e - 0.02 

DIMENSIONLESS TIME: 5 
Fig. 1. Comparison of surface temperature vs time for hyper- 

bolic and Fourier cases. 

0.161 DIMENSIONLESS RElAXATION TIME: E- 0.02 
DIMENSIONLESS TIME: 5 - O.W5 

0.12 
HYPERSOLld 

0.06 
-----_ 

FOURIER 

DIMENSIONLESS LOCATION: q 

Fig. 2. Comparison of internal temperature profiles for 
hyperbolic and Fourier cases. 

Next, Fig. 2 compares internal temperature profiles at 
the dimensionless time of 5 = 0.005 when vu_, z 0.36 using 
convection conditions for air cited with Fig. 1. The tem- 
perature in Fig. 2 for the hyperbolic case is again larger 
because of conduction delay. Further, the difference between 
cases would again grow larger by increasing E. However, the 
maximum diKerence always occurs at the surface since the 
wave decays while propagating into the slab. Although not 
shown in Fig. 2. the hyperbolic prediction converges to the 
Fourier value as time increases. 

Slab cooling 
Equations (6)-(7b) also apply to cooling of the slab since 

the dimensionless variables are the same for cooling. 
However, the effect of cooling becomes evident after revert- 
ing to original variables. For example, with T, = 20X and 
r, = 6O’C, the hyperbolic surface temperature has a step 
decwase to approximately 55°C when subjected to cooling 
with the same values of h, T, etc. as for the air convection 
cited previously. This decrease occurs because of conduction 
delay that, initially, prevents replacing heat removed from 
the surface with heat from deeper in the slab. For the Fourier 
case, however, the surface temperature is still initially 
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unchanged because of immediate replacement. Thus, the 
hyperbolic temperature is now less than the Fourier value. 

In general, hyperbolic temperatures during cooling are less 
than Fourier values because of conduction delay. Conse- 
quently, internal temperature profiles for the hyperbolic case 
would show a thermal wave separating “uncooled” and 
“cooled” regions in the slab. These hyperbolic temperatures 
would converge to Fourier values as time increases. 

Conditions,for importance qfhyperholic conduction 
Equation (6) permits quick estimates of conditions for 

which hyperbolic conduction is important since Oatcp involves 
the maximum difference between hyperbolic and Fourier 
temperatures, as described previously. Specifically, 
O,,,, = (r,,,,- T,)/(7’, - r,) is the maximum difference that 
actually occurs between hyperbolic and Fourier surface tem- 
peratures divided by the largest difference that could occur. 
Hence, setting a minimum value of H,,,, as a criterion for 
importance of hyperbolic conduction, then asking “What 
values of l/(1 +c -“‘) cause this criterion to be met or exceed- 
ed?” leads to 

21Xh2 -a-1),,, (8) k? (1 -(&)’ 

Thus, equation (8) gives values of r and 11 etc., for which 
hyperbolic conduction is important. For example, setting 
(&l = 0.2 as the criterion and using values for z, x and k 
cited previously for processed meat shows h > 138.0 W:(m’ 
‘C) for hyperbolic conduction to be important. 

Agreemew with numrricul solutiorl 
The analytical solution obtained here for the semi-Infinite 

slab agrees with a numerical solution [ 151 (e.g. finite differ- 
ence) for a finite slab. In the numerical solution, one surface 
of the finite slab is subjected to a pulsed heat flux while the 
other surface is heated by convection. When viewed from 
either surface, this slab behaves as a semi-infinite slab before 
the thermal waves originating at both surfaces meet inside 
the slab. Thus. before the waves meet, the temperature profile 
given in ref. [15] for convection is the same as that obtained 
with equations (7) and (7a) or (7b). 

4. CONCLUSION 

In conclusion, temperatures predicted with the hyperbolic 
equation can be significantly different from those of the Four- 
ier equation for a slab with surface convection. For heating 
of the slab, hyperbolic temperatures are initially greater than 
Fourier values. For cooling, however, the temperatures are 
initially less than Fourier values. For both heating and 
cooling, hyperbolic temperatures converge to Fourier values 
as times increases. 

These differences have important implications since the 
hyperbolic equation may be valid for some materials. pos- 
sibly including human tissue. For example, burn damage to 
tissue increases rapidly with increasing temperature. Thus. 

damage predictions currently based on Fourier’s law would 
be more severe using the hyperbolic equation. Further. “coo- 
ling protocols” developed with Fourier’s law for cryo- 
preserving human organs may need to be re-examined 
because organ damage is sensitive to temperature. Here. 
the lower temperatures that would be predicted with the 
hyperbolic equation suggest an increased risk of damage not 
anticipated using Fourier’s law. 
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